Natural Language Processing with Disaster Tweets End to End Project
- Top 10 Data Analysis Techniques for Beginners [2025 Guide to Get Started Fast] - May 30, 2025
- How to Build a Powerful Data Scientist Portfolio as a Beginner [Step-by-Step 2025 Guide] - May 26, 2025
- Hypothesis Testing in Machine Learning Using Python: A Complete Beginner’s Guide [2025] - May 24, 2025

Natural Language Processing with Disaster Tweets :
Analyzing tweets to identify if they are about real disasters is a critical application of Natural Language Processing (NLP). This project focuses on building a classification model to predict whether a tweet refers to a real disaster or not. Using NLP techniques, we preprocess the data, extract meaningful features, and train machine learning models for prediction.
Objective:
- Perform NLP on tweets to classify them as disaster-related or not.
- Preprocess, clean, and analyze the dataset.
- Build and evaluate machine learning models for classification.
Dataset Description:
We will use the Natural Language Processing with Disaster Tweets dataset, which contains:
- train.csv: Training data with
text
,keyword
,location
, andtarget
columns. - test.csv: Test data with
text
,keyword
, andlocation
columns. - sample_submission.csv: A sample submission file in the correct format.
Columns:
id
: Unique identifier for each tweet.text
: The tweet’s text.location
: The location the tweet was sent from (may be blank).keyword
: A keyword from the tweet (may be blank).target
: 1 if the tweet is about a real disaster, 0 otherwise (only in train.csv).
Tools & Libraries:
- Python
- Pandas
- NumPy
- Matplotlib
- Seaborn
- Scikit-learn
- NLTK
- TensorFlow/Keras (optional)
Explore More Such Data Science Projects from Here: https://thesmartcoder.com/blog/
1. Data Collection & Setup
Import Libraries and Load Dataset
# Import necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import nltk from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report, accuracy_score, confusion_matrix from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression # Load the datasets train_data = pd.read_csv('/path/to/train.csv') # Replace with actual file path test_data = pd.read_csv('/path/to/test.csv') # Preview the datasets train_data.head()
Explanation:
- The training data contains tweets and their target labels (
target
), while the test data contains tweets without target labels. These datasets will be used for model training and evaluation.
2. Exploratory Data Analysis (EDA)
Dataset Overview
# Display dataset information train_data.info() train_data.describe() train_data.isnull().sum()
Target Distribution
# Plot the distribution of the target variable sns.countplot(x='target', data=train_data, palette='viridis') plt.title('Distribution of Target Variable') plt.xlabel('Target (0 = Not Disaster, 1 = Disaster)') plt.ylabel('Count') plt.show()
Keyword Analysis
# Most frequent keywords top_keywords = train_data['keyword'].value_counts().head(10) top_keywords.plot(kind='bar', color='blue') plt.title('Top 10 Keywords') plt.xlabel('Keyword') plt.ylabel('Count') plt.show()
Tweet Length Analysis
# Length of tweets train_data['tweet_length'] = train_data['text'].apply(len) sns.histplot(train_data['tweet_length'], kde=True, color='green') plt.title('Tweet Length Distribution') plt.xlabel('Tweet Length') plt.ylabel('Frequency') plt.show()
Explanation:
- EDA helps us understand the dataset structure, missing values, and important features like
keyword
,location
, andtext
.
3. Data Cleaning
Handle Missing Values
# Fill missing keywords and locations train_data['keyword'] = train_data['keyword'].fillna('no_keyword') train_data['location'] = train_data['location'].fillna('unknown') # Drop rows with missing text data = train_data.dropna(subset=['text'])
Text Cleaning
# Import NLTK packages from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer import re # Download necessary NLTK resources nltk.download('stopwords') nltk.download('punkt') nltk.download('wordnet') # Text preprocessing function def clean_text(text): text = re.sub(r'http\S+', '', text) # Remove URLs text = re.sub(r'[^a-zA-Z\s]', '', text) # Remove special characters text = text.lower() # Convert to lowercase tokens = word_tokenize(text) # Tokenize tokens = [word for word in tokens if word not in stopwords.words('english')] # Remove stopwords lemmatizer = WordNetLemmatizer() tokens = [lemmatizer.lemmatize(word) for word in tokens] # Lemmatize return ' '.join(tokens) # Apply text cleaning train_data['clean_text'] = train_data['text'].apply(clean_text)
Explanation:
- Missing values in
keyword
andlocation
are handled. Text preprocessing includes removing URLs, special characters, stopwords, and lemmatizing tokens for cleaner text.
4. Feature Engineering
TF-IDF Vectorization
# Initialize TF-IDF Vectorizer tfidf = TfidfVectorizer(max_features=5000) # Transform text data X = tfidf.fit_transform(train_data['clean_text']).toarray() y = train_data['target']
Train-Test Split
# Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Explanation:
- TF-IDF converts text into numerical features by measuring the importance of words in the dataset. The dataset is split for training and testing.
5. Model Building & Evaluation
Logistic Regression
# Train logistic regression model logreg = LogisticRegression() logreg.fit(X_train, y_train) # Make predictions y_pred_logreg = logreg.predict(X_test) # Evaluate the model print("Logistic Regression Accuracy:", accuracy_score(y_test, y_pred_logreg)) print(classification_report(y_test, y_pred_logreg))
Random Forest Classifier
# Train Random Forest model rf_model = RandomForestClassifier() rf_model.fit(X_train, y_train) # Make predictions y_pred_rf = rf_model.predict(X_test) # Evaluate the model print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf)) print(classification_report(y_test, y_pred_rf))
Explanation:
- Both Logistic Regression and Random Forest models are trained and evaluated. The classification report provides precision, recall, and F1 scores.
6. Submission
Generate Predictions for Test Data
# Preprocess test data test_data['clean_text'] = test_data['text'].apply(clean_text) X_test_final = tfidf.transform(test_data['clean_text']).toarray() # Predict using the best model test_data['target'] = rf_model.predict(X_test_final) # Save the submission file test_data[['id', 'target']].to_csv('submission.csv', index=False)
Explanation:
- The test dataset is preprocessed and predictions are generated using the best-performing model. A submission file is created in the required format.
7. Conclusion
This Natural Language Processing with Disaster Tweets project demonstrates how to preprocess text, engineer features, and build machine learning models to classify disaster-related tweets. Among the models tested, Random Forest Classifier achieved the highest accuracy.
Try experimenting with deep learning models like LSTM or BERT for better predictions. Share your insights and improve disaster response strategies!
Keywords: Natural Language Processing with Disaster Tweets, Tweet classification, Machine learning for disaster response, NLP projects, Natural Language Processing with Disaster Tweets pdf, Natural Language Processing with Disaster Tweets with source code.
Latest Posts:
- Top 10 Data Analysis Techniques for Beginners [2025 Guide to Get Started Fast]
- How to Build a Powerful Data Scientist Portfolio as a Beginner [Step-by-Step 2025 Guide]
- Hypothesis Testing in Machine Learning Using Python: A Complete Beginner’s Guide [2025]
- Netflix Data Analysis with Python: Beginner-Friendly Project with Code & Insights
- 15 Best Machine Learning Projects for Your Resume That Will Impress Recruiters [2025 Guide]